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Dynamical stochastic models of single neurons and neural networks often take the form of a system ofn>2
coupled stochastic differential equations. We consider such systems under the assumption that third and higher
order central moments are relatively small. In the general case, a system of1

2n(n13) ~generally! nonlinear
coupled ordinary differential equations holds for the approximate means, variances, and covariances. For the
general linear system the solutions of these equations give exact results—this is illustrated in a simple case.
Generally, the moment equations can be solved numerically. Results are given for a spiking Fitzhugh-Nagumo
model neuron driven by a current with additive white noise. Differential equations are obtained for the means,
variances, and covariances of the dynamical variables in a network ofn connected spiking neurons in the
presence of noise.@S1063-651X~96!03511-8#

PACS number~s!: 87.10.1e, 05.40.1j, 02.50.2r

I. INTRODUCTION

There has been much recent interest in stochastic models
of neural activity either at the single neuron or network level
@1–5#. In realistic such models of biological neurons the
principal state variables are governed by systems of nonlin-
ear differential equations such as those of Hodgkin and Hux-
ley @6# or reduced systems such as those of Fitzhugh,
Nagumo, Arimoto, and Yoshizawa@7,8#. We will refer to the
latter systems as Fitzhugh-Nagumo systems.

In this article our main aim is to present and illustrate a
method for analyzing the behavior of nonlinear stochastic
neural models for both spiking neurons and networks of neu-
rons. The types of model for which the analysis is most
suitable are those in which a cell or a network of connected
neurons is represented by dynamical equations of the form of
a multidimensional system of coupled nonlinear stochastic
differential equations. One example of such a model@3# con-
sists of a collection ofn noisy Fitzhugh-Nagumo model neu-
rons. A general form for such dynamical models for stochas-
tic neuronal networks or single neurons leads to the
following system of 2n coupled nonlinear stochastic differ-
ential equations:

dXj5Ff~Xj ,Yj !1I j~ t !1 (
k51

n

JjkQ~Xk!Gdt1b jdWj , ~1!

dYj5h~Xj ,Yj !dt. ~2!

Here theXj , j51,2,...,n are voltage variables, theYj ,
j51,2,...,n are recovery variables,Jjk are synaptic weights
for the connection from neuronk to neuronj , andQ~ ! is a

threshold function, often taken as sigmoidal in shape@9#, I j ,
j51,2,...,n are applied currents for neuronj , and b j (t),
j51,2,...,n are noise parameters. On the other hand, models
for the large-scale activity of neural networks may also be
governed by coupled nonlinear equations such as those of
Wilson and Cowan@10#.

In order to study the properties of such multidimensional
diffusion processes, one may consider solving the Kolmog-
orov or Fokker-Planck equation for the transition probability
density function. However, it is a partial differential equation
with, in the case of ann-component system,n11 indepen-
dent variables which presents, in the case of largen, a large
computational task even on modern large computing sys-
tems. It is useful to have analytical or semianalytical tech-
niques to apply to these problems in addition to that of nu-
merically solving the Fokker-Planck equation. In practical
computations with multidimensional diffusion processes, the
most frequent methods employed are Monte Carlo simula-
tion @11# or moment calculation@12#. In addition, in some
cases a stationary probability distribution can be found@13#
either analytically or numerically.

Because there are many different forms for the stochastic
differential equations which arise in modeling of single neu-
rons and networks of connected neurons, we will obtain, in a
general case, differential equations for moments up to those
of order 2~though this can easily be extended! for each com-
ponent in a multidimensional nonlinear system of diffusion
processes. The form of the system studied includes many of
the above mentioned neurobiological models, both for single
neurons@14# and for networks, including that described by
Eq. ~1! @1,3,4#.

II. GENERAL RESULTS

Although the primary motivation for this article comes
from the need for neurodynamical theories, because nonlin-
ear systems of stochastic differential equations have fre-
quently been employed as mathematical models in the physi-
cal, chemical, and biological sciences@13,15#, we will first
consider a general system of coupled diffusion processes.

*Present address: Institut des Neurosciences, Universite´ Paris VI,
9 quai St-Bernard, F-75005 Paris, France. After November, 1996:
INSERM UPR 444, Universite´ Paris VI, CHU Saint Antoine, 27
rue Chaligny F-75571 Paris Cedex 12, France. Electronic addresses:
rodrig@cptsu2.univ-mrs.fr; tuckwell@cptsu2.univ-mrs.fr.

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5585~6!/$10.00 5585 © 1996 The American Physical Society



We shall then consider, in Sec. III, the specialization of the
techniques to a biologically realistic model of a spiking
single neuron, with an example of the numerical results ob-
tained, and a general neural network model in Sec. IV.

Let X5$X(t),t>0%5$„X1(t),X2(t),...,Xn(t)…,t>0%, with
n>1, be ann-dimensional random process with components
satisfying the stochastic differential equations

dXj~ t !5 f j„X~ t !,t…dt1 (
k51

m

gjk„X~ t !,t…dWk~ t !, ~3!

where j51,2,...,n and m>1. The Wk5$Wk(t),t>0%,
k51,2,...,m are standard Wiener processes~that is, they
each have zero mean, initial value zero with probability one,
and variance equal tot at time t! which we assume are in-
dependent. The latter assumption can be relaxed without dif-
ficulty but it usually is taken to hold. It is also assumed that
existence and uniqueness conditions@16# for the solution of
Eq. ~3! are fulfilled.

Define then means for the various components

X̄j~ t !5E@Xj~ t !#,

where j51,...,n, and then2 quantities

Ki j ~ t !5E@„Xi~ t !2X̄i~ t !…#@„Xj~ t !2X̄j~ t !…#,

where i , j51,...,n. Of thesen2 quantities there aren vari-
ances,

Vj~ t !5E@„Xj~ t !2X̄j~ t !…#
2,

where j51,...,n, and 1
2n(n21) distinct covariances,Ki j (t)

with i, j . These 1
2n(n13) first and second order central

moments, under certain assumptions about the probability
distribution ofX(t), satisfy a system of12n(n13) nonlinear
ordinary differential equations. This system of deterministic
equations, associated with the stochastic system described by
Eq. ~3!, is found by first finding differential equations for
these moments which hold exactly. For the means we have
immediately, on using general integration according to the
Itô definition @17#, the integro-differential equation

dX̄j~ t !

dt
5E@ f j„X~ t !,t…#. ~4!

The application of Itoˆ’s formula @16# to the quantitiesKi j (t),
including the casesi5 j , in conjunction with~3! yields the
following integro-differential equations for the covariances
and variances:

dKi j ~ t !

dt
5EF „Xi~ t !2X̄i~ t !…f j„X~ t !,t…1„Xj~ t !2X̄j~ t !…

3 f i„X~ t !,t…1 (
k51

m

gik„X~ t !,t…gjk„X~ t !,t…G . ~5!

Note that Eqs.~4! and ~5! hold exactly.

From these equations, approximate differential equations
can be found for the first and second order moments under
the assumption that the distribution function ofX~t! is con-
centrated near the mean pointX̄(t)5„X̄1(t),X̄2(t),...,X̄n(t)…
@that is, Pr$uX(t)2X̄(t) u,e%, for some~usually small! posi-
tive e, is close to 1# and is symmetric about this point@18#. It
then follows that third and higher order odd central moments
are close to zero and that fourth and higher order even mo-
ments are small relative to the second moment. Expectations
can thus be calculated approximately by retaining up to sec-
ond order terms in a Taylor expansion of the distribution
function about the mean. Thus ifG(x1 ,x2 ,...,xn) is a real-
valued function ofn variables, then one has the following
approximation formula:

E@G„X~ t !,t…#'G~m,t !1
1

2 (
l51

n

(
p51

n H ]2G

]xl]xp
J

~m,t !

Clp ,

~6!

where m5m(t) is the approximation to X̄(t) and
Clp5Clp(t) is the approximation toKlp(t). The notation

H ]2G

]xl]xp
J

~m,t !

means evaluation of the~deterministic! indicated derivative
of the indicated~real! functionG(x1 ,x2 ,...,xn ,t) at the de-
terministic point„m1(t),m2(t),...,mn(t),t….

Applying ~6! to Eqs.~4! for the means gives immediately
the requiredn differential equations for these quantities:

dmj

dt
5 f j~m,t !1

1

2 (
l51

n

(
p51

n H ]2f j
]xl]xp

J
~m,t !

Clp . ~7!

To obtain approximate differential equations for the vari-
ances and covariances we first consider the first part of~5!.
On applying~6! we find that this is given by

E@„Xi~ t !2mi~ t !…f j„X~ t !,t…#

5
1

2 (
l51

n

(
p51

n H ]2

]xl]xp
@~xi2mi ! f j #J

~m,t !

Clp . ~8!

Since

H ]2

]xl]xp
@~xi2mi ! f j #J

~m,t !

5H d i l
] f j
]xp

1d ip
] f j
]xl

J
~m,t !

,

~9!

whered jk is Kronecker’s delta~equal to 1 for j5k and 0
otherwise!, we find after some algebra, and utilizing the fact
that the termE[ „Xj~t!2mj~t!…fi„X(t),t…# is just ~8! with i and
j reversed,
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dCi j ~ t !

dt
5(

l51

n H ] f i
]xl

J
~m,t !

Cl j1(
l51

n H ] f j
]xl

J
~m,t !

Cil

1 (
k51

m H gikgjk1 1

2 (
l51

n

(
p51

n Fgjk ]2gik
]xl]xp

1
]gik
]xl

]gjk
]xp

1
]gik
]xp

]gjk
]xl

1gik
]2gjk

]xl]xp
G J

~m,t !

Clp . ~10!

Thus ~10!, in general, gives the sought after differential equations for the second order central moments, including the
required covariances. In the event thati5 j Eq. ~10! yields the following differential equation for the variancesSj (t)'Vj (t):

dSj~ t !

dt
52F H ] f j

]xj J
~m,t !

Sj1(
lÞ j

n H ] f j
]xl J

~m,t !

Cl j G1 (
k51

m Fgjk2 ~m,t !1(
l51

n H S ]gjk
]xl D

2

1gjk
]2gjk
]xl

2 J
~m,t !

Sl

1(
l51

n

(
p51

n

8H ]gjk
]xp

]gjk
]xl

1gjk
]2gjk

]xl]xp J
~m,t !

ClpG , ~11!

where the prime denotes summation withlÞp.
Although in general Eqs.~7! and ~10! are quite compli-

cated, simplifications may occur in certain cases; and in oth-
ers, it is found that these equations actually give exact rather
than approximate values for the means, variances, and cova-
riances of the dynamical variables. These special cases are
discussed in the Appendix.

III. A NONLINEAR STOCHASTIC
SPIKING NEURON MODEL

We will apply the above framework to determine the
means and second order central moments of a two-
component neuron model with additive white noise in the
first component. There are several such systems@19# but we
have chosen the Fitzhugh-Nagumo system which has been
employed to provide insight into the more complex
Hodgkin-Huxley system of four equations. It shares with the
latter the properties of subthreshold responses, solitary
waves ~action potentials or spikes! in response to suitable
stimuli, as well as repetitive activity~periodic solutions! in
certain ranges of stimuli. Then,

dX5@ f ~X!2Y1I #dt1bdW, ~12!

dY5b~X2gY!dt, ~13!

whereX5X(t) is the ‘‘voltage’’ variable,Y5Y(t) is the
recovery variable,W5$W(t),t>0% is a standard Wiener
process,I is a deterministic input current~stimulus! which is
taken to be a constant, andb and g are positive constants.
The functionf is a cubic,

f ~x!5kx~x2a!~12x!, ~14!

where 0,a,1. Usually one takesa, 1
2 in order to obtain

suitable suprathreshold responses.
Application of the method outlined in the preceding sec-

tion gives the following five coupled differential equations
for the approximate means, variances, and the covariance
between the two components:

dm1

dt
5 f ~m1!2m21

1

2
f 9~m1!S11I , ~15!

dm2

dt
5b~m12gm2!, ~16!

dS1
dt

52 f 8~m1!S122C121b2, ~17!

dS2
dt

52b~C122S2!, ~18!

dC12

dt
5bS12S21C12@ f 8~m1!2gb#. ~19!

With f 8(m1)5k[2m1(11a)2a23m1
2] and f 9(m1)

5k[2(11a)26m1], Eqs.~15!–~19! may be solved numeri-
cally.

We give an illustrative example of the computation of the
moments with the following parameter values:k50.5,
a50.1, b50.015,g50.2, I51.5, b50.01. We employed a
fourth order Runge-Kutta method with a step size ofDt50.1
or smaller. Initial conditions were chosen asm1(0)
5m2(0)51, S1(0)5S2(0)5C12(0)50.

Results are shown in Fig. 1 for the means,m1(t) and
m2(t), in Fig. 2 for the variance of the first or potential
variable,S1(t), and in Fig. 3 for the variance of the recovery
variable,S2(t), and the covariance of the two components.
For these quantities, excellent agreement was obtained with
the corresponding quantities for Monte Carlo simulations
which are not shown here. When the noise parameterb in-
creases sufficiently, the systems~15!–~19! for the moment
approximations may eventually become unstable and peri-
odic solutions no longer pertain. We plan to make a more
detailed study of simulation studies in the future.

We note that not only can a single space-clamped neuron
model be treated with the present method, but also a com-
partmental model in which the cell is represented by a sys-
tem of coupled ordinary differential equations, one for each
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dendritic ~and possibly axonal! segment and for the soma.
We also plan to illustrate this in a future article.

IV. A NETWORK OF SPIKING NEURONS

In this section we will derive dynamical equations for the
first and second order moments in a neuronal network gov-
erned by the stochastic system~1!. Note that even when de-
lays due to transmission of nerve impulses or synaptic delays
are included, this form of model can still be appropriate if
the delays are not very large.

It is useful to rename the 2n dynamical variables as
Uj5Xj , Uj1n5Yj , j51,...,n, so that the system may be
written

dUj5Ff~Uj ,Uj1n!1I j~ t !1 (
k51

n

JjkQ~Uk!Gdt1b jdWj ,

~20!
dUj1n5h~Uj ,Uj1n!dt,

where againj51,2,...,n. Then it follows from~7! that the
following differential equations hold for the approximate
means of the voltage and recovery variables of then neu-
rons:

dmj

dt
5f~mj ,mj1n!1I j~ t !1 (

k51

n

JjkQ~mk!

1
1

2 Ffxx~mj ,mj1n!Sj12fxy~mj ,mj1n!Cj , j1n

1fyy~mj ,mj1n!Sj1n1 (
k51

n

JjkQ9~mk!SkG , ~21a!

and

dmj1n

dt
5h~mj ,mj1n!1

1

2
@hxx~mj ,mj1n!Sj

12hxy~mj ,mj1n!Cj , j1n1hyy~mj ,mj1n!Sj1n#,

~21b!

where j51,2,...,n, and subscriptsx,y denote derivatives.
We can also find the equations satisfied by the second

order moments for each network neuronal variable. Using
~10! we have, for 1< j< i<n,

dCi j

dt
5@fx~mi ,mi1n!1fx~mj ,mj1n!#Ci j

1fy~mi ,mi1n!Ci1n, j1fy~mj ,mj1n!Ci , j1n

1b i
21b j

2. ~22a!

Whenn11< i<2n, 1< j<n, we find

FIG. 1. The means ofX(t) andY(t) in the Fitzhugh-Nagumo
model obtained from the system of differential equations~15!–~19!.
Parameter values here and in the next two figures are given in the
text.

FIG. 2. The variance,S1(t), of the neuronal potential variable,
determined by solving the differential equations.

FIG. 3. The variance,S2(t), of the recovery variable in the
model neuron, and the covariance,C12(t), of the voltage and recov-
ery variables calculated from the differential equations~15!–~19!.
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dCn1q, j

dt
5@fx~mj ,mn1 j !1hy~mq ,mn1q!#Cn1q, j

1fy~mj ,mn1 j !Cn1q,n1 j1hx~mq ,mn1q!Cqj

1 (
k51

n

Q8~mk!JkkCn1q,k , ~22b!

whereas whenn< j< i<2n, the covariances are

dCn1q,n1r

dt
5hx~mq ,mn1q!Cq,n1r1hx~mr ,mn1r !Cn1q,r

1@hy~mq ,mn1q!1hy~mr ,mn1r !#Cn1q,n1r ,

~22c!

whereq and r range from 1 ton.
The following relatively simple differential equations for

the variances are obtained:

dSi
dt

52@fx~mi ,mi1n!Si1fy~mi ,mi1n!Ci ,i1n1b i
2#,

i51,...,n ~23a!

and

dSn1q

dt
52@hx~mq ,mn1q!Cq,n1q1hy~mq ,mn1q!Sn1q#,

q51,...,n. ~23b!

Using ~21!–~23! the more important statistical properties of
the network may be obtained when the random disturbances
are not very large and any deterministic stimuli are fairly
small and intermittent. For example, in the Fitzhugh-
Nagumo case, one takes

f~x,y!5 f ~x!2y,

where f ( ) is given by~14!. The numerical solution of these
equations, even for considerably largen, does not present
major problems with modern computers. We plan to report
solutions and their properties for various network dynamics
and architectures elsewhere.
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APPENDIX

In this appendix we consider some simplifications which
occur in certain special cases of the system of equations con-
sidered in Sec. II.

1. Additive noise terms

If we assume that all coefficients of thedWk in ~3! are
functions of time only,gjk5gjk(t), we may set

(
k51

m

gjk
2 ~ t !5b j

2~ t !, ~A1!

in which case the differential equations for the variances
simplify to

dSj~ t !

dt
52F H ] f j

]xj
J

~m,t !

Sj1(
lÞ j

n H ] f j
]xl

J
~m,t !

Cl j G1b j
2~ t !.

~A2!

Two components

There are many classical nonlinear models in which there
are two components. Examples are the Lotka-Volterra sys-
tem of predator-prey interactions and many reduced neuronal
models, one of which was considered above. We let the gov-
erning stochastic differential equations be

dX5 f ~X,Y,t !dt1a1~ t !dW11a2~ t !dW2 ~A3!

and

dY5g~X,Y,t !dt1b1~ t !dW11b2~ t !dW2 , ~A4!

where the coefficients of the noise terms are deterministic
functions of time. Then we have the following five coupled,
generally nonlinear, equations for the two means, two vari-
ances, and the covariance:

dm1

dt
5 f ~m,t !1

1

2
@ f xx~m,t !S11 f yy~m,t !S2

1 f xy~m,t !C12#, ~A5!

dm2

dt
5g~m,t !1

1

2
@gxx~m,t !S11gyy~m,t !S2

1gxy~m,t !C12#, ~A6!

dS1
dt

52@ f x~m,t !S11 f y~m,t !C12#1a2~ t !, ~A7!

dS2
dt

52@gy~m,t !S21gx~m,t !C12#1b2~ t !, ~A8!

dC12

dt
5 f y~m,t !S21@ f x~m,t !1gy~m,t !#C121gx~m,t !S1 ,

~A9!

wherea25a 1
21a 2

2 andb25b 1
21b 2

2 and subscripts denote
differentiation with respect to the indicated variables.
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2. The general linear stochastic system

If all of n stochastic equations~3! are linear we may write

dXj~ t !5S (
q51

n

Ajq~ t !Xq~ t !1aj~ t !D dt
1 (

k51

m S (
q51

n

Bjqk~ t !Xq~ t !1bjk~ t !D dWk~ t !.

~A10!

In this case the differential equations for the means become

dmj~ t !

dt
5 (

q51

n

Ajq~ t !mq~ t !1aj~ t !, ~A11!

and this system may be solved explicitly by employing its
fundamental matrix. The equations for the covariances are

dCi j

dt
5AjiSi1Ai jSj1(

lÞ i

n

AjlCil1(
lÞ j

AilCl j

1 (
k51

m Fgik~m,t !gjk~m,t !1(
l51

n

BilkBjlkSl

1(
lÞp

n

BilkBjpkClpG , ~A12!

where

gjk~x,t !5bjk~ t !1 (
q51

n

Bjqk~ t !xq . ~A13!

The differential equations for the variances follow from this
formula on settingi5 j . The variances and covariances may
thus also be obtained explicitly using the fundamental matrix
because the inhomogeneous terms are known. Furthermore,
all the differential equations for the means, variances, and
covariances so obtained are the same as those satisfied by

these quantities exactly@20#. We may conclude, appealing to
uniqueness theorems for the solutions of linear systems of
differential equations, that the above approximation proce-
dure gives exact results for a general linear stochastic system
of the form of ~A10!. A simple verification of this follows.

An example

We will illustrate in a one-dimensional linear case that the
first and second order moments predicted by the approxima-
tion procedure coincide exactly with the known values. The
following stochastic differential equation has arisen in vari-
ous applications@21#:

dX5mXdt1sXdW, ~A14!

where it is assumed thatX(0)5x0 with probability one. The
transition probability densities forX(t) and its moments are
known exactly, since a monotonic transformation takesX to
a Wiener process. Letting the mean and variance ofX(t) be
m(t) andS(t), respectively, application of the above formu-
lation gives the following differential equations form andS:

dm

dt
5mm, ~A15!

dS

dt
5s2m21~2m1s2!S. ~A16!

The solutions of these equations withm(0)5x0 and
S(0)50 are

m~ t !5x0e
mt, ~A17!

S~ t !5x0
2e2mt~es2t21!, ~A18!

which are exactly the known mean,X̄(t), and varianceV(t)
for X(t).
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