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Statistical properties of stochastic nonlinear dynamical models
of single spiking neurons and neural networks
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Dynamical stochastic models of single neurons and neural networks often take the form of a systegh of
coupled stochastic differential equations. We consider such systems under the assumption that third and higher
order central moments are relatively small. In the general case, a systérr(rn)iiL 3) (generally nonlinear
coupled ordinary differential equations holds for the approximate means, variances, and covariances. For the
general linear system the solutions of these equations give exact results—this is illustrated in a simple case.
Generally, the moment equations can be solved numerically. Results are given for a spiking Fitzhugh-Nagumo
model neuron driven by a current with additive white noise. Differential equations are obtained for the means,
variances, and covariances of the dynamical variables in a netwonkoofinected spiking neurons in the
presence of nois¢S1063-651X96)03511-9

PACS numbdrs): 87.10+€, 05.40+j, 02.50~r

I. INTRODUCTION threshold function, often taken as sigmoidal in shgel
j=1,2,...n are applied currents for neurgn and g;(t),
There has been much recent interest in stochastic modejs=1,2,...n are noise parameters. On the other hand, models
of neural activity either at the single neuron or network levelfor the large-scale activity of neural networks may also be
[1-5]. In realistic such models of biological neurons thegoverned by coupled nonlinear equations such as those of
principal state variables are governed by systems of nonlinwilson and Cowarj10].
ear differential equations such as those of Hodgkin and Hux- In order to study the properties of such multidimensional
ley [6] or reduced systems such as those of Fitzhughdiffusion processes, one may consider solving the Kolmog-
Nagumo, Arimoto, and Yoshizawa,8]. We will refer to the  orov or Fokker-Planck equation for the transition probability
latter systems as Fitzhugh-Nagumo systems. density function. However, it is a partial differential equation
In this article our main aim is to present and illustrate awith, in the case of am-component systenn+1 indepen-
method for analyzing the behavior of nonlinear stochasticdent variables which presents, in the case of larga large
neural models for both spiking neurons and networks of neucomputational task even on modern large computing sys-
rons. The types of model for which the analysis is mosttems. It is useful to have analytical or semianalytical tech-
suitable are those in which a cell or a network of connectedhiques to apply to these problems in addition to that of nu-
neurons is represented by dynamical equations of the form aherically solving the Fokker-Planck equation. In practical
a multidimensional system of coupled nonlinear stochasticomputations with multidimensional diffusion processes, the
differential equations. One example of such a m¢8gton-  most frequent methods employed are Monte Carlo simula-
sists of a collection of noisy Fitzhugh-Nagumo model neu- tion [11] or moment calculatio12]. In addition, in some
rons. A general form for such dynamical models for stochascases a stationary probability distribution can be foligl
tic neuronal networks or single neurons leads to theeither analytically or numerically.
following system of 21 coupled nonlinear stochastic differ- Because there are many different forms for the stochastic
ential equations: differential equations which arise in modeling of single neu-
rons and networks of connected neurons, we will obtain, in a
general case, differential equations for moments up to those
dXj=| &(X;,Y))+1;(1)+ > Jik @ (X)) [dt+g;dW,, (1)  of order 2(though this can easily be extendédr each com-
k=1 ponent in a multidimensional nonlinear system of diffusion
processes. The form of the system studied includes many of
dY;=h(X;,Y;)dt. (20 the above mentioned neurobiological models, both for single
neurons[14] and for networks, including that described by
Here theX;, j=1,2,...n are voltage variables, th¥;, Eq. (1) [1,3,4.
j=1,2,...n are recovery variableg;, are synaptic weights
for the connection from neurok to neuronj, and®( ) is a

n

Il. GENERAL RESULTS

Although the primary motivation for this article comes
*Present address: Institut des Neurosciences, Univétaiis VI,  from the need for neurodynamical theories, because nonlin-
9 quai St-Bernard, F-75005 Paris, France. After November, 1996ear systems of stochastic differential equations have fre-
INSERM UPR 444, Universitdaris VI, CHU Saint Antoine, 27 quently been employed as mathematical models in the physi-
rue Chaligny F-75571 Paris Cedex 12, France. Electronic addressesal, chemical, and biological sciencgk3,15, we will first
rodrig@cptsu2.univ-mrs.fr; tuckwell@cptsu2.univ-mrs.fr. consider a general system of coupled diffusion processes.
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We shall then consider, in Sec. lll, the specialization of the From these equations, approximate differential equations
techniques to a biologically realistic model of a spiking can be found for the first and second order moments under
single neuron, with an example of the numerical results obthe assumption that the distribution function Xft) is con-
tained, and a general neural network model in Sec. IV. centrated near the mean poMft) = (X (t),X5(t),....Xx(t))

Let X={X(t),t=0}={(X (1), X5(1),.... X (t)),t=0}, with  [that is, P{{X(t) —X(t)|<e}, for some(usually small posi-
n=1, be am-dimensional random process with componentstive e, is close to 1and is symmetric about this poifi8]. It

satisfying the stochastic differential equations then follows that third and higher order odd central moments
are close to zero and that fourth and higher order even mo-
m ments are small relative to the second moment. Expectations

dX;(t)=f;(X(t),t)dt+ Z gik(X(1),DdW(t), (3) can thus be calculated approximately by retaining up to sec-
k=1 ond order terms in a Taylor expansion of the distribution
function about the mean. Thus®(x,,X5,...,X,) is a real-

where j=1,2,...n and m=1. The W,={Wy(t),t=0},  yalued function ofn variables, then one has the following
k=1,2,...m are standard Wiener processghat is, they approximation formula:

each have zero mean, initial value zero with probability one,
and variance equal tbat timet) which we assume are in-
dependent. The latter assumption can be relaxed without dif- 1N G
ficulty but it usually is taken to hold. It is also assumed that E[G(X(t),t)]=G(m,t)+ > Z 2 [ —] Cips
existence and uniqueness conditi¢aé] for the solution of (m,t)
Eq. (3) are fulfilled. (6)
Define then means for the various components _
where m=m(t) is the approximation toX(t) and
X_j(t)zE[XJ-(t)], Cip=Cip(t) is the approximation td,,(t). The notation

wherej=1,... n, and then? quantities 2G
{ §X|§Xp ] (m.t)

K () =EL (Xi(t) = X ())ILX; (1) = X, ()],

wherei,j=1,...n. Of thesen? quantities there ara vari- means evaluation of th@eterministi¢ indicated derivative
ances, of the indicatedrea) function G(x4,X,,...,X,,t) at the de-
terministic point(my(t),my(t),...,my(t),t).
Vj(t):E[(X,-(t)—Xj(t))]z, Applying (6) to Egs.(4) for the means gives immediately

the requirech differential equations for these quantities:

wherej=1,...n, and3n(n—1) distinct covariances;; (t)

with i<j. These sn(n+3) first and second order central "o 5
moments, under certain assumptions about the probability dm bl B (mt)+ } E 2 9°f, C @
distribution of X(t), satisfy a system ofn(n+ 3) nonlinear dt 2 =1 p=1 | 9X9X, (m) Ip
ordinary differential equations. This system of deterministic ’

equations, associated with the stochastic system described t% obtain approximate differential equations for the vari-
Eq. (3), is found by first finding differential equations for PP q

these moments which hold exactly. For the means we ha nces and covariances we first consider the first pa$jof

immediately, on using general integration according to the n applying(6) we find that this is given by
Ito definition[17], the integro-differential equation

ELCXi (1) —my(t)F;(X(1),1)]
dXi(t) _
T =E[f;(X(1),D)]. 4

12 P
=52 2 [ T, [(xi—mof,-]] Cp. (®
The application of [tts formula[16] to the quantities;; (), P (m.0)

including the cases=j, in conjunction with(3) yields the

following integro-differential equations for the covariancesSince

and variances:

9 af; af;
dK XX [ —my)f;] =1\ G (97+5ip07_x| .
gt =E| 00 =X (DT X(D),D+ (X (D) =X(1) ’ m i ™ 9

otherwise, we find after some algebra, and utilizing the fact
that the termE[ (X;(t)—m;(t)fi(X(t),t)] is just(8) with i and
Note that Eqs(4) and(5) hold exactly. j reversed,

m
Xfi(x(t)lt)+|(21 gik(X(t),t)gjk(X(t),t)}. 5) where & is Kronecker's deltaequal to 1 forj=k and 0
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Wi|n] er2lR] e

m n n 2
1 Pk ik IGjk  IGik Gk I“Gik
+ GOt = = g A R g —
gl [g'kg"‘ 2 Z Z { Ik oxiax, | ax axg X X O Gxax,

J Cip- (10)
(m,t)

Thus (10), in general, gives the sought after differential equations for the second order central moments, including the
required covariances. In the event thatj Eqg. (10) yields the following differential equation for the variancggt) ~V(t):

ds(t) ot . Ok azg,k
at —2l X]_] ;lﬁm] +E gjk(mt)+2[( ) +Ojk —o2 Py S
(myt) (m,t) (m.t)
n n 2
99k 99jk Gk
2 2 X, X Tk ax|axp] Cip|» (1)
(m,t)
|
where the prime denotes summation withp. dm 1
Although in general Eqs(7) and (10) are quite compli- d—=f(m1) my+ 5 (M) Sy +1, (15
cated, simplifications may occur in certain cases; and in oth-
ers, it is found that these equations actually give exact rather
than approximate values for the means, variances, and cova- dm, —b(m m,) (16)
riances of the dynamical variables. These special cases are dt 1Y),
discussed in the Appendix.
d—Slzzf'(m )S;—2Cq,+ B2 (17
ll. A NONLINEAR STOCHASTIC dt =1 2P
SPIKING NEURON MODEL
We will apply the above framework to determine the d—SZ—Zb CirS)) (18)
means and second order central moments of a two- dt (C=S
component neuron model with additive white noise in the
first component. There are several such systgrigbut we dC12
have chosen the Fitzhugh-Nagumo system which has been =bS,—S,+CyJ f'(my)—yb]. (19

employed to provide insight into the more complex

Hodgkin-Huxley system of four equations. It shares with the , 5 ;

latter the properties of subthreshold responses, solitaryVith —f'(my)=k[2m,(1+a)—a—3mi] and f"(my)
waves (action potentials or spikgsn response to suitable —K[2(1+a)—6my], Egs.(15—(19) may be solved numeri-

stimuli, as well as repetitive activitgeriodic solutionsin  cally-

certain ranges of stimuli. Then, We give an illustrative example of the computation of the
moments with the following parameter valuek=0.5,
dX=[f(X)=Y+1]dt+ BdW, (12) a=0.1,b=0.015,y=0.2,1=1.5, B=0.01. We employed a

fourth order Runge-Kutta method with a step size\of 0.1
or smaller. Initial conditions were chosen a%,(0)
dY=b(X=y¥)dt, 13 =my(0)=1, 5,(0)=5,(0)=C1£0)=0.

] ] . Results are shown in Fig. 1 for the meams,(t) and
where X=X(t) is the “voltage” variable,Y=Y(t) is the m,(t), in Fig. 2 for the variance of the first or potential
recovery variable W={W(t),t=0} is a standard Wiener yariaple,S,(t), and in Fig. 3 for the variance of the recovery
proceSS] is a deterministic input Curl’elﬁstimulué which is Variableysz(t)’ and the covariance of the two Components'
taken to be a constant, atdand y are positive constants. For these quantities, excellent agreement was obtained with

The functionf is a cubic, the corresponding quantities for Monte Carlo simulations
which are not shown here. When the noise paramgter-
f(x)=kx(x—a)(1—-Xx), (14)  creases sufficiently, the systerfiss)—(19) for the moment

approximations may eventually become unstable and peri-
where 0<a<1. Usually one takes<3 in order to obtain odic solutions no longer pertain. We plan to make a more
suitable suprathreshold responses. detailed study of simulation studies in the future.

Application of the method outlined in the preceding sec- We note that not only can a single space-clamped neuron
tion gives the following five coupled differential equations model be treated with the present method, but also a com-
for the approximate means, variances, and the covariangeartmental model in which the cell is represented by a sys-
between the two components: tem of coupled ordinary differential equations, one for each
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FIG. 1. The means oK(t) andY(t) in the Fitzhugh-Nagumo FIG. 3. The varianceS,(t), of the recovery variable in the
model obtained from the system of differential equatitt®—(19).  model neuron, and the covarian@(t), of the voltage and recov-
Parameter values here and in the next two figures are given in thery variables calculated from the differential equati¢hs)—(19).
text.

.. . where againj=1,2,...n. Then it follows from(7) that the
Sindrlmc(elmd tpo_ﬁsu)tly taxt(;]n}al_segr?e;nt ano[[_f(l)r the soma. following differential equations hold for the approximate
€ also plan to iflustrate this in a future article. means of the voltage and recovery variables of theeu-

rons:
IV. A NETWORK OF SPIKING NEURONS

In this section we will derive dynamical equations for the n

first and second order moments in a neuronal network gov- d——(;/)(m] M)+ 15D+ Z Jjk®(my)
erned by the stochastic systdf). Note that even when de- t

lays due to transmission of nerve impulses or synaptic delays 1
are included, this form of model can still be appropriate if + 5 B My, M) S+ 26 (M, My )C 4
the delays are not very large.
It is useful to rename the r2 dynamical variables as n
Uj=X;, U Y, j=1,...n, so that the system may be "
wrltten jen= Yol y y +¢yy(mjymj+n)sj+n+k§=:1 J®@"(m)S|, (219
n
du;=| #(U; ,uj+n)+|j(t)+k2l Ji®(Uy) [dt+B;dw;,  and
(20 g
R LU m 1
dUjn=h(U;},Ujndt, djt+n =h(m; va+n)+ [hxx(M;,M; 1) S
0.025
+2hyy (M, My 0) Cj ot hyy (M, My 1) Sjin],
(21b)
0.02f
wherej=1,2,...n, and subscriptg,y denote derivatives.
o015} We can also find the equations satisfied by the second
8 order moments for each network neuronal variable. Using
2 (10) we have, for kj<i=n,
0.01
0.005} T:[st(miami+n)+¢x(mjrmj+n)]cij
+ ¢y (M, M )Cipnj+ (MM )Cijin
0 20 40 60 80 100 120 1
) 40 160 180 200 +B|2+BJ2 (228)

FIG. 2. The variance$;(t), of the neuronal potential variable,

determined by solving the differential equations. Whenn+1<i<2n, 1<j=<n, we find
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Ch+al i
dt :[¢x(mj 1mn+j)+hy(mq-mn+q)]cn+q,j kgl gjzk(t)=,8j2(t), (A1)
+ d’y(mj vmn+j)cn+q,n+j + hx(mq vmn+q)qu
n in which case the differential equations for the variances
+ 2 0" (M)IuChi gk (22p ~ Simplify to
k=1
whereas whem=j<i=<2n, the covariances are ds(t) of: " af
: s LLOPY S+> {2 Cy|+BA.
dChygner dt P my L g
—dt’ =hx(mq,mn+q)cq,n+r+hx(mr7mn+r)cn+q,r (A2)
+[hy(mq umn+q) + hy(mr !mn+r)]Cn+q,n+r ’
(220 Two components
There are many classical nonlinear models in which there
whereq andr range from 1 ton. are two components. Examples are the Lotka-Volterra sys-
The following relatively simple differential equations for tem of predator-prey interactions and many reduced neuronal
the variances are obtained: models, one of which was considered above. We let the gov-
ds erning stochastic differential equations be

gt = 2L (M M) S+ by (M My ) Cin+ B,
dX=f(X,Y,t)dt+a; (1) dW; +a,(t)dW,  (A3)
i=1,...n (233

and and

dS,.q

dY=g(X,Y,t)dt+b;(t)dW;+b,(t)dW,, A4
=20, (Mg My ) Ca i g By(Mg, My ) Sy o], 906Y. DAty (AW + b (AW, (Ad)

_ where the coefficients of the noise terms are deterministic
g=1,..nh. (23b ; X ) .

functions of time. Then we have the following five coupled,
Using (21)—(23) the more important statistical properties of generally nonlinear, equations for the two means, two vari-
the network may be obtained when the random disturbancences, and the covariance:
are not very large and any deterministic stimuli are fairly
small and intermittent. For example, in the Fitzhugh-

am; 1
Nagumo case, one takes W:f(m,t)+ > [fu(M,1)S; +fy (DS,
d(x.y)=f(x)—-y,

wheref( ) is given by(14). The numerical solution of these

equations, even for considerably large does not present

major problems with modern computers. We plan to report d_m?:g(m t)+ l [y(M,1)S;+Gyy(M,1)S,
solutions and their properties for various network dynamics dt T2 e IEL Sy
and architectures elsewhere.

+ (M) Cy3], (A5)

+ Oxy(M, 1) Cy5), (AB6)
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APPENDIX

In this appendix we consider some simplifications which

occur in certain special cases of the system of equations condCiz
sidered in Sec. Il. dt - fy(myt)sz+ [fx(m,t) + gy(mf[)]Clz"‘ gx(mvt)sly

(A9)

1. Additive noise terms

If we assume that all coefficients of thB\, in (3) are  wherea?=a%+a3 and 8°=b?+b3 and subscripts denote
functions of time onlyg;,=g;«(t), we may set differentiation with respect to the indicated variables.
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2. The general linear stochastic system these quantities exact[20]. We may conclude, appealing to
If all of n stochastic equation®) are linear we may write uniqueness theorems for the solutions of Ilngar _systems of
n differential equations, that the above approximation proce-
dure gives exact results for a general linear stochastic system
q; Ajq(DXq(t) +2;(1) |dt of the form of (A10). A simple verification of this follows.

dX(t)=

n
An example
> quk(t>xq<t>+bjk<t>)dwkm. P
q=1 We will illustrate in a one-dimensional linear case that the
(A10) first and second order moments predicted by the approxima-
In this case the differential equations for the means becomg&on procedure coincide exactly with the known values. The

m
+ 2
k=1

ami(t) <& following stochastic differential equation has arisen in vari-
J 2 Ajq(mg(t) +a(1), (A1l)  ous application$21]:
and this system may be solved explicitly by employing its dX=puXdt+oXdW, (AL4)

fundamental matrix. The equations for the covariances are

A where it is assumed that(0)=x, with probability one. The

transition probability densities fok(t) and its moments are

i]

W:AjiﬂJrAijSﬁ;i A; Gy +§_ AilCy known exactly, since a monotonic transformation taKe®

. a Wiener process. Letting the mean and varianck¥(oj be
m n m(t) andS(t), respectively, application of the above formu-

+k21 gik(m,t)gjk(m,t)Jrlzl BiBjikS lation gives the following differential equations for andS:

" dm (A15)

R :,LLm,
+|Z'p BiIkijkCIp}a (A12) dt
ds
where Jo = otmi+ (2u+0?)S (A16)
n
9ik(X, 1) =bj (1) + 2 Big()Xq- (A13) The solutions of these equations witm(0)=x, and
a=1 S(0)=0 are

The differential equations for the variances follow from this
formula on setting =j. The variances and covariances may
thus also be obtained explicitly using the fundamental matrix S(t) :Xzezm(eazt_ 1), (A18)
because the inhomogeneous terms are known. Furthermore,

all the differential equations for the means, variances, anevhich are exactly the known meax(t) and variance/(t)
covariances so obtained are the same as those satisfied foy X(t).

m(t) =xye*!, (A17)
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